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Abstract Maize dwarf mosaic virus (MDMV) is a wide-
spread pathogenic virus that causes serious loss of yield in
maize (Zea mays). RNA interference (RNAi) triggered by
hairpin RNA (hpRNA) transcribed from a transgenic
inverted-repeat sequence is an effective way to defend
against viruses in plants. In this study, an hpRNA
expression vector containing a sense arm and an antisense
arm of 150 bp separated by an intron of the maize actin
gene was constructed to target the P1 protein (protease)
gene of MDMV and used to transform Agrobacterium
tumefaciens strain EHA105. The transformed Agrobacte-
rium strain was used to transform maize embryonic calli
isolated from immature embryos by an improved culture
technique. In all, 46 plants were regenerated after stringent
hygromycin B selection, and 18 of them were certified to
be positive by PCR amplification. Of these positive plants,
13 were grown to produce offspring, and nine were
identified by Southern blotting to have the transgene
integrated with one or two copies. The resistance of three
T2 lines was evaluated in a field trial of dual MDMV
inoculation in two environments and was found to be
improved compared with the non-transformed control. The
disease indexes of the transgenic plant lines h2, 13, and h1
were not significantly different from the highly resistant
control line H9-21. The viral titers of the inoculated plants

were detected by double antibody sandwich enzyme-linked
immunosorbent assay (DAS-ELISA), and the result was in
accord with the resistance evaluated in the field trial. The
addition of uniconazole S3307 (0.25 mgl−1) and ABT root-
promoting powder (0.5 mgl−1) showed a significant
improvement of hardening in regenerated plantlets, which
were stronger and generated a better fibrous root system
than the control. This improvement could facilitate the
transgenic operation of maize.
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Introduction

Maize dwarf mosaic virus (MDMV) is a worldwide
pathogen that causes chlorosis, stunting, and significant
loss of yield in maize (Redinbaugh et al. 2004; Uzarowska
et al. 2009). In China, MDMV causes a yield loss of about
10% in a year, and this loss has been increasing steadily in
recent years (Jiang and Zhou 2002; Wu et al. 2007).
Strategies for the management of virus diseases normally
include control of the vector population using insecticides,
adjusting seedtime, and the use of virus-free propagating
material and appropriate cultural practices (Dasgupta et al.
2003). However, these methods can become ineffective
because of the non-persistent model of virus transmission
by aphids (Wu et al. 2007). The use of resistant germplasm
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is an environmentally sustainable and effective way for
controlling virus diseases of maize (Redinbaugh et al.
2004), but it is time consuming because identification and
development of resistant inbred lines or hybrids needs to
respond to year-to-year inconsistency of viral disease
pressure. The biological control of MDMV remains a
challenge.

In many crops, cross-protection resistance to virus
infection has been developed by introducing a sequence
of the viral genome into the target crop by genetic
transformation (Baulcombe 1996; Lu et al. 1998; Sun et
al. 2001; Liu et al. 2009). The specific capsid protein (CP)
and P1 protein (protease) encoded by a single sense RNA
strand of the MDMV genome are crucial to viral particle
coating and cell-to-cell transmission (Cronin et al. 1995).
Transgenic resistant lines have been obtained by introduc-
tion of the sense (Murry et al. 1993; Liu et al. 2009) or the
antisense (Bai et al. 2006) sequence of the MDMV CP
gene. Waterhouse et al. (1998) considered this kind of cross
protection as viral gene silencing triggered by RNA
interference (RNAi) of double-stranded RNA, which is
characterized as stable, sustainable, and safe (Waterhouse et
al. 1998, 2001; Prins and Goldbach 1996; Wang and
Metzlaff 2005). Among those, however, the range of
resistances obtained varied from extreme resistance to
susceptibility, even in lines obtained with the same trans-
gene (Morroni et al. 2008), and the resistance is not
complete (Dasgupta et al. 2003).

RNAi triggered by hairpin RNA (hpRNA) transcribed
from the transgenic inverted-repeat sequence provides a
straight-forward natural defense mechanism against inva-
sive viruses in plants and has been proved to be more
efficient against viruses than the cross protection triggered
by the introduction of a sense or an antisense sequence
(Chuang and Meyerowitz 2000; Kusaba 2004; Ding and
Voinnet 2007; Prins et al. 2007; Rahman et al. 2008; Aliyari
and Ding 2009; Obbard et al. 2009). The defense effect can
be enhanced by the inclusion of an intron in the hpRNA
construct (Wesley et al. 2001). This technique has been
used to engineer virus resistance in rice (Tyagi et al. 2008),
tomato (Abhary et al. 2006; Ramesh et al. 2007), potato
(Vargas et al. 2008), common bean (Bonfim et al. 2007),
cucumber (Chen et al. 2004; Morroni et al. 2008), tobacco
(Waterhouse et al. 1998; Qu et al. 2007), poinsettia (Clarke

et al. 2008), pepper (Negrete et al. 2009), and Arabidopsis
(Fusaro et al. 2006).

In maize, the only attempt to induce RNAi-mediated
transgenic virus resistance was reported by Bai et al.
(2008), who transformed maize with an hpRNA expression
vector containing the inverted-repeat sequence of the
MDMV replicase gene, and obtained transgenic resistant
lines. In this study, an hpRNA expression vector containing
reverted-repeat sense and antisense arms was constructed to
target the MDMV gene encoding the P1 protein (protease)
and used to transform maize embryonic calli. Transgenic
lines were regenerated after selection with hygromycin B,
identified by PCR amplification and Southern blotting, and
evaluated for their virus resistance in inoculated field trials.
Viral titers were detected by double antibody sandwich
enzyme-linked immunosorbent assay (DAS-ELISA).

Materials and Methods

Construction of hpRNA Expression Vector

A 150-bp specific fragment of the P1 protein (protease)
gene was selected from the genomic sequence of MDMV
(GenBank accession number NC003377.1) and synthesized
at Sangon Co., Shanghai, China. This fragment was
amplified using PCR primers (Table 1) containing the
restriction sites necessary for sense (XhoI/ApaI) and
antisense (BamHI/PstI) orientation. The amplified frag-
ments were inserted into the pSK vector (Stratagene, USA)
in sense and antisense orientations, separated by an intron
of the maize actin gene, to construct an hpRNA expression
vector. The hpRNA expression construct was cloned into
the plant expression vector pCAMBIA1300 (Stratagene,
USA), under the control of the ubiquitin promoter and the
nos terminator, generating the hpRNA expression vector
pASP150 (Fig. 1). For selection, the hygromycin phospho-
transferase gene conferring hygromycin B resistance was
used under the control of the cauliflower mosaic virus 35S
promoter (P-35S) and 35S terminator (T-35S). Sequence
analysis was used to verify the junctions and orientations in
the hpRNA expression vector pASP150. This vector was
introduced by electroporation into the disarmed Agro-
bacterium tumefaciens strain EHA105.

Primer Restriction site Sequence

F1 XhoI 5′-CCCCTCGAGAATCATGGAGCTGTTCGCTG-3′

R1 ApaI 5′-TTTGGGCCCTCTTTCCATATCTGTGCACACTTC-3′

F2 PstI 5′-AAACTGCAGAATCATGGAGCTGTTCGCTG-3′

R2 BamHI 5′-CAAGGATCCTCTTTCCATATCTGTGCACACTTC-3′

Table 1 PCR primers used
to construct hpRNA
expression vector

298 J. Plant Biol. (2010) 53:297–305



Agrobacterium-Mediated Transformation and Plant
Regeneration

Maize immature embryos of inbred line 18-599 were
inoculated onto N6 inducement medium that had been
modified by increasing the Ca2+ content from 1.13 to
5 mmol l−1 and the addition of 0.5 mg l−1 uniconazole
S3307 (Fu et al. 2005), and cultured in darkness for callus
isolation. Embryonic calli were screened, subcultured, and
transformed by co-cultivation with the transformed Agro-
bacterium strain as described by Frame et al. (2002) and
Ishida et al. (2007). After cultivation for 7 days, the calli
were transferred to selection medium containing hygrom-
ycin B at a concentration of 5, 10, or 15 mg l−1 and
cultured for 20 days. Then, the screened resistant calli
were transferred to regeneration medium modified by the
addition of 0.25 mg l−1 uniconazole S3307 (Fu et al. 2005)
and 0.5 mg l−1 ABT root-promoting powder (Tang et al.
2004), and cultured for plantlet regeneration at 27°C with
a photoperiod of 12 h dark/12 h light (1,000 μmol/m2s).
Plantlets with fully grown shoots and roots were trans-
planted into plastic pots containing vermiculite and
margarite (3:1, w/w), allowed to acclimatize for 2–3 weeks
in greenhouse, and then transplanted into the field for self-
pollination to produce T0 seeds.

PCR Detection of Transformed Plants

After planting in the field, a leaf blade was collected
from each regenerated plant and used for DNA
extraction. For screening the putative transgenic plants,
the 150-bp fragment of the P1 gene was amplified using
forward (5′-AATCATGGAGCTGTTCGCTG-3′) and re-
verse (5′-TCTTTCCATATCTGTGCACACTTC-3′) pri-
mers, which were the sequences used to construct the
hpRNA expression vector without the restriction sites. A
20-μl sample of reaction mixture containing 10× PCR

buffer, 200μmol l−1 dNTPs, 1.5 mmol l−1Mg2+, 0.5 μmol l−1

of each primer, and 0.1 μg of template DNA was subjected
to PCR amplification under the following conditions: 5 min
at 95°C, then 35 cycles of 30 s at 95°C, 30 s at 58°C, 30 s at
72°C, and a final extension step of 8 min at 72°C. PCR
products were analyzed by electrophoresis in 2.0% (w/v)
agarose gels.

Southern Blotting Identification of Transformed Plants

Southern blotting with the genomic DNA extracted from
the leaf samples of 13 T1 lines derived from the fertile T0

plants positive in PCR was used to identify the stable
integration of the transgene into the maize genome and to
evaluate the transgene copy number. A 20-μg sample of
genomic DNAwas digested with restriction enzyme BamHI
for 4 h and separated by electrophoresis in 0.8% (w/v) TBE
agarose gel overnight at 1 Vcm−1 followed by transfer onto
Gene Screen Transfer membrane (Millipore Corporation,
Bedford, MA, USA). Membranes were hybridized over-
night with a digoxigenin-labeled (Roche Diagnostics,
Germany) probe of the sense fragment of the hpRNA
construct.

Field Inoculated Evaluation

The transgenic T2 plant lines derived from the T1 lines
positive in Southern blotting, together with non-transformed
controls of a highly resistant line (H9-21, Xi et al. 2008), a
highly susceptible line (Mo17, Li et al. 2007), and the non-
transformed control line 18-599 were grown in a randomized
block design with three replications at Xinzhou in Shanxi
province and at Ya’an in Sichuan province, China, which
have the highest frequency of MDMV in China. On the basis
of reports by Louie (1986) and Kuntze et al. (1995),
mechanical inoculation was done twice within 1 week at
the three- to four-leaf stage, using inoculum prepared from

Fig. 1 The T-DNA regions of hpRNA expression vector pASP50. LB
left border, RB right border, Hpt hygromycin phosphotransferase gene,
P-35S cauliflower mosaic virus 35S promoter, T-35S cauliflower

mosaic virus 35S terminator, P-Ubi ubiquitin promoter, T-nos
terminator of nopaline synthase, intron intron of maize actin gene,
P150 150-bp fragment of MDMV P1 protein (protease) gene

Table 2 Promotion effect of uniconazole S3307 and ABT root-promoting powder addition to plant regeneration

Addition of uniconazole S3307 and ABT root-promoting powder Piece of
resistant calli

Number of regenerated
plantlets

Number of survived
plantlets

0.25 mg l−1 uniconazole S3307 and 0.5 mg l−1 ABT root-promoting powder 250 69 33

0.5 mg l−1 uniconazole S3307 and 0.5 mg l−1 ABT root-promoting powder 200 37 12

Negative control 400 27 1
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the leaf sap of maize plants systemically infected with
MDMV. The disease incidence and symptom scale were
investigated at the adult stage according to the standard
proposed by Lin (1989). The disease index was calculated as:

Disease indexð%Þ

¼
P ðNumber of infected plants � symptom scaleÞ � 100%

Number of total plants�maximum symptom scale

Resistance was classified into five grades: highly
resistant (HR, disease index 0–10%), resistant (R, disease
index 10.1–25.0%), intermediate (I, disease index 25.1–
40.0%), susceptible (S, disease index 40.1–60.0%), and
highly susceptible (HS, disease index >60.1%). One-way
analysis of variance test was done with SPSS 18.0 software
(http://www.spss.com/). The level of significance was set at
p<0.05.

DAS-ELISA

The virus titer of the transformed lines was quantified by
DAS-ELISA using an MDMV DAS ELISA kit (AC
Diagnostics Inc., USA) according to the manufacturer’
instructions. At the adult stage, the third leaf from the top

was sampled from each plant of the same lines in the three
replications in the field inoculated trial at Xinzhou, cut into
5 mm×5 mm pieces after removing the midribs, weighed as a
mixed sample of 0.2 g, and homogenized in 2 ml of 0.01 mol
l−1 phosphate buffer (pH 7.0). The homogenate was
centrifuged for 1 min at 10,000×g. Microtiter plates (Nunc
from Inter Med., Denmark) were coated with 2 μg ml−1 IgG
freshly prepared from antiserum to MDMV and incubated
overnight at 4°C. After a thorough wash in PBS-T buffer
[50 mmol l−1 Tris–HCl, pH 7.4, 150 mmol l−1 NaCl,
0.1% (v/v) Tween 20], 100 μl of the centrifuged homogenate
was dispensed into each triplicate sample well. The micro-
titer plates were incubated in a humid chamber for 2 h at
room temperature and then washed again as described above.
A 100-μl sample of freshly prepared enzyme-IgG conjugate
was placed into each sample well, and the plates were
washed three times with PBS-T buffer. A 100-μl sample of
PNP solution [0.6 mmol l−1 MgCl2·6H2O, 3.8 mmol l−1

NaN3, 12% (v/v) diethanolamine, pH 9.8] was added to each
well. After reaction in a humid chamber at room temperature
for 30–60 min until clear color developed in the positive
control wells, absorbance at 405 nm (A405) was measured
with an ELISA microtiter plate reader (BioTech, model
ELX-800, USA).

Fig. 2 Effects of uniconazole S3307 and ABT root-promoting
powder to the growth of regenerated plants. a A regenerated plant
on the regeneration medium with 0.25 mg l−1 uniconazole S3307 and
0.5 mg l−1 ABT root-promoting powder. b A regenerated plant
transferred from the regeneration medium with 0.25 mg l−1 uni-
conazole S3307 and 0.5 mg l−1 ABT root-promoting powder (left), a

regenerated plant transferred from the regeneration medium without
uniconazole S3307 and ABT root-promoting powder (middle), and a
regenerated plant transferred from the regeneration medium with
0.5 mg l−1 uniconazole S3307 and 0.5 mg l−1 ABT root-promoting
powder (right). c A regenerated plant on the regeneration medium
without uniconazole (S3307) and ABT root-promoting powder

Fig. 3 PCR detection of the regenerated plants. Lane M 50-bp DNA
ladder marker, lane 1 non-transformed control 18-599, lane 2 positive
control of expression vector pASP150, lanes 3–20 transformed plants

3, 5, 9, 10h, 10L, h1, h2, 12, 13, 14, m-1, 15, 16, 18, 20, 21, 24, and
25, respectively
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Results

Transformation Rate and Effect on Regeneration
of Uniconazole S3307 and ABT Root-Promoting Powder

From the 800 pieces of embryonic calli transformed by
co-cultivation, 98 (12.3%) pieces of resistant embryonic
calli were obtained after hygromicin B selection. A total
of 46 (46.9%) plantlets were regenerated after the
recovering subculture and the multiplication subculture
(Table 2).

The addition of 0.25 mg l−1 uniconazole S3307 and
0.5 mg l−1 ABT root-promoting powder induced a
significant increase of plant regeneration (Table 2). The
regenerated plantlets were stronger and generated a more
developed fibrous root system than the negative control.
The growth of the regenerated plantlets was inhibited when
the concentration of uniconazole added was increased to
0.5 mg l−1 (Fig. 2); the dwarfed regenerated plants became
sterile when transferred into the field.

Integration of the Transgene into the Maize Genome

Of the 46 regenerated plants, 18 (39.1%) were detected as
positive by specific PCR amplification and certified as
putative transgenic plants (Fig. 3). Out of these 18 plants,
13 (72.2%) grew to reproduce seeds of the T1 generation.
Out of the 13 T1 lines, nine (69.2%) were shown by
Southern blotting to have stable transgene integration, and
seven (77.8%) of them showed single-copy integration, and

double-copy integration was found in the other two (22.2%)
lines. The other four (30.8%) lines were not identified to be
transformants (Fig. 4). On the basis of embryonic callus
pieces used in the co-cultivation, the transformation rate
was 1.13%.

Virus Resistance of T2 Plant Lines

Differences among MDMV symptoms were observed in
the field trials of the T2 plant lines, the non-transformed
control, the susceptible control, and the resistant control
(Fig. 5). After the pollination stage, systemic infection of
MDMV was observed in the non-transformed control (18-
599), the susceptible control (Mo17), and in some T2 plant
lines. The disease indexes of the different T2 plant lines
and the controls matched each other in the two environ-
ments (Table 3). The non-transformed control (18-599)
was evaluated as susceptible (S) to MDMV with a disease
index between 40.1% and 60.0%, the susceptible control
(Mo17) was evaluated as highly susceptible (HS) with a
disease index >60.1%, while the resistant control (H9-21)
was evaluated as resistant with a disease index between
10.1% and 25.0%. Of the nine transgenic T2 plant lines
derived from the T1 lines positive in Southern blotting,
lines h2, 13, and h1 were judged to have intermediate
resistance to MDMV with a disease index between 25.1%
and 40.0%, showing no systemic infection. This resistance
is increased significantly when compared with the non-
transformed control line 18-599, but was not significantly
different from the highly resistant control line H9-21. The

Fig. 4 Southern blotting of putative transgenic T1 plant lines positive
in PCR detection. Lane 1 non-transformed control 18-599; lanes 2–14
transformed plant lines 3, 5, 9, 10h, 10L, h1, h2, 12, 13, 14, 15, 20,

and 21; lane 15 plasmid control of hpRNA expression vector
pASP150

Fig. 5 A different performance
of MDMV symptom in T2

plants and controls at the
shooting stage. a The resistant
control (H9-21), b the
susceptible control (Mo17),
c the non-transformed control
(18-599), d the T2 plant line h1
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resistant grades of the other six transgenic T2 plant lines
were evaluated as susceptible (lines 9, 5, 3, and 21) and
highly susceptible (lines 10L and 10h).

Virus Titer Detected by DAS-ELISA

The virus titers of the inoculated transgenic T2 plant
lines were obtained by measurement of A405 in DAS-
ELISA (Table 4). The highly susceptible and susceptible
lines (3, 5, 9, 10h, 10L, 21, and Mo17) evaluated in the
field inoculated trial had higher virus titers than other

lines. The virus titers of transgenic plant lines h2, 13,
and h1 were lower than that of the non-transformed
control 18-599 and as low as the highly resistant control
line H9-21.

Discussion

MDMV Resistance of the RNAi-Based Transgenic Lines

The integration of the hpRNA expression construct was
certified for nine transgenic lines by Southern blotting. The
MDMV resistance of lines h2, 13, and h1 was increased
significantly compared with that of the non-transformed
control line 18-599, although their resistance grade was
evaluated as intermediate. The disease indexes of these
three lines were not significantly different from that of the
highly resistant control line H9-21, which was regarded as
MDMV-free under ordinary non-inoculated conditions and
was used as a source of highly resistant germplasm (Xi et
al. 2008). The virus-free resistance was not obtained in the
inoculated field evaluation of RNAi-based transgenic plant
lines developed by Bai et al. (2008) to introduce an
inverted-repeat sequence of the MDMV replicase gene into
the maize genome. The disease incidence was ∼15%.

Four of the RNAi-based transgenic lines (9, 5, 3, and 12)
were susceptible to MDMV, and two of them (10L and 10h)
were highly susceptible, including lines 5 and 10h with
double-copy integration. Their susceptibility to MDMV
was not significantly different from that of the non-
transformed 18-599. This result could be due to three

Table 3 MDMV resistance of T2 transformed plant lines

T2 plant line and control Disease incidence (%) Disease index (%) Resistance grade

Xinzhou Ya’an Average Xinzhou Ya’an Average

H 9-21 (resistant control) 56.2 48.1 52.2 22.9 17.9 20.4 a R

h2 26.0 29.5 27.8 25.4 27.5 26.5 a I

13 45.3 38.2 41.8 33.3 27.1 30.2 ab I

h1 52.2 38.6 45.4 34.1 28.8 31.5 ab I

9 61.5 65.2 63.4 42.7 46.0 44.4 bc S

5 72.0 65.6 68.8 47.8 49.3 48.6 c S

3 82.9 78.4 80.7 55.1 46.7 50.9 c S

18-599 (non-transformed control) 93.7 100.0 96.9 48.6 55.8 52.2 c S

21 88.7 83.5 86.1 60.4 57.4 58.9 c S

10L 100.0 95.7 97.9 85.4 72.7 79.1 d HS

10h 100.0 100.0 100.0 86.8 81.2 84.0 d HS

Mo17 (susceptible control) 100.0 100.0 100.0 85.5 83.5 84.5 d HS

In the column of average disease index, the same lowercase letters indicate non-significance, and the different lowercase letters indicate
significance at possibility level of 0.05

R resistance, I intermediate, S susceptible, HS highly susceptible to MDMV

Table 4 Absorbance value at 405 nm in DAS-ELISA of the T2 plant
lines and controls

T2 plant line and control Absorbance at 405nm

H 9-21 (resistant control) 0.201

h2 0.207

13 0.285

h1 0.311

9 0.503

5 0.692

3 0.778

21 0.896

18-599 (non-transformed control) 0.904

10L 1.002

10h 1.323

Mo17 (susceptible control) 1.580

Each absorbance value is the average of three wells
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possible reasons: (1) T-DNA rearrangement is well docu-
mented in some transgenic attempts (Deroles and Gardner
1988; Azhakanandam et al. 2000; Yin and Wang 2000; Rai
et al. 2007). Almost 50% of the 27 transgenic rice lines
studied showed rearrangement of T-DNA inserts according
to Rai et al. (2007). Such T-DNA rearrangements could
occur in our study and truncate the integrated hpRNA
expression construct. (2) Numerous studies have shown that
many plant viruses encode proteins that are able to suppress
RNAi (Mallory et al. 2001; Vance and Vaucheret 2001;
Hannon 2002; Savenkov and Valkonen 2002; Kubota et al.
2003; Moissiard and Voinnet 2004; Love et al. 2007).
Further study is necessary to explore if MDMV encodes
any RNAi suppressor. (3) As reported by Wesley et al.
(2001), Chen et al. (2004), Missiou et al. (2004), Di Nicola-
Negri et al. (2005), and Ritzenthaler (2005), the effective
length of the expressed hpRNA constructs to trigger RNAi
in transgenic plants is 300–800 bp, and the short limit is
∼98 bp. The 150-bp hpRNA expression construct we
introduced into the maize genome might be a little too
short to trigger efficient RNAi. The underlying reason for
the lack of resistance in some of the transgenic lines
remains to be clarified.

Effect of Uniconazole S-3307 and ABT Root-Promoting
Powder to Plant Regeneration

The inducement, subculture, and regeneration of embryonic
calli are a bottleneck in maize transgenic operation (Sidorov
and Duncan 2009). Fu et al. (2005) improved the
inducement and subculture of maize embryonic calli by
increasing the Ca2+ content from 1.13 to 5 mmol l−1 and
addition of 0.5 mg l−1 uniconazole S3307 to N6. In this
study, we added 0.25 mg l−1 uniconazole S3307 and
0.5 mg l−1 ABT root-promoting powder to the N6
regeneration medium. The regenerated plantlets became
stronger, and their fibrous root system was more developed
than that of the negative control (Fig. 2). Uniconazole
S3307 is a category of triazole that regulates the growth of
plants and protects them from abiotic stresses by inhibiting
the synthesis of gibberellin (Fletcher and Hofstra 1990;
Fletcher et al. 2001; Mizutani 2006; Saito et al. 2006). One
of the conspicuous responses of plants to treatment with
triazoles is that they are darker green with more chlorophyll
than that in the controls (Davis et al. 1988; Fletcher and
Hofstra 1990; Khalil and Rahman 1995). The regulation
and protection effects of uniconazole could induce toler-
ance to water deficiency (Zhang et al. 2007). The active
components of ABT root-promoting powder include indole-
3-butytric acid and indole-3-acetic acid, which are regu-
lators of plant growth. ABT root-promoting powder has
been certified to have the ability to promote rooting and to
increase the survival rate of plants under abiotic stress

(Zhang et al. 1994; Tang et al. 2004). Therefore, the
mechanism underlying the success of the addition of
uniconazole and ABT root-promoting powder to promote
plantlet regeneration in our study could be attributable to
the ability to increase chloroplast formation and tolerance to
water deficiency, and the increased root generation of the
regenerated plants upon transfer from regeneration medium
to nutrient soil.

In summary, we have transformed maize with an hpRNA
expression construct of the MDMV P1 protein (protease)
gene by Agrobacterium-mediated transformation and
obtained transgenic lines resistant to MDMV. The disease
index of the transgenic plant line h2 had no significant
difference from the highly resistant control line H9-21. The
viral titers of the inoculated plants were detected by DAS-
ELISA, and the results were in accord with the resistance
investigated in the field evaluation. This kind of effective
resistance conferred by a transgene has significant potential
because no chemical is used to control virus diseases. The
improvement of the N6 regeneration medium by the
appropriate addition of uniconazole and ABT root-
promoting powder could facilitate the transgenic operation
of maize.
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